Bayesian Nonparametric Policy Learning in Dec-POMDPs

Miao Liu¹, Chris Amato², Xuejun Liao³, Lawrence Carin³, Jonathan P. How¹

¹Massachusetts Institute of Technology, ²University of New Hampshire, ³Duke University

December 12th 2015

MALIC15 NIPS Talk/ Main work was publised in IJCAI15
Motivation

- Decentralized control enables new missions for autonomous systems while reducing burden on manpower/communication infrastructure
- Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs): Extend single agent MDP and POMDP models
 - General representation of multi-agent planning under uncertainty problem

- Search and rescue
- UAV surveillance
- Cyber security
- Space exploration
- Warehousing
- Human-robot teaming
Multiagent Autonomy Challenges

▶ **Challenge:** Difficult to generate detailed models of all the agents in these complex, real-world settings

▶ **This paper:** a full Bayesian method to optimize policies directly from data, without the need of such models
 - Each agent’s policy represented as a **Finite State Controller (FSC)**
 - Number of nodes in each FSC is **learned from data**
 - Efficient **fully Bayesian inference** via variational Bayes
Decentralized Partially Observable Markov Decision Processes (DEC-POMDPs)

$M_{DEC-POMDP}(\mathcal{N}, \mathcal{S}, \mathcal{A}, \mathcal{O}, T, \Omega, R)$

- $\mathcal{N} = \{1, \ldots, N\}$ is a finite set of agents
- \mathcal{A}_n, each agent’s finite set of actions
- \mathcal{O}_n, each agent’s finite set of observations
- \mathcal{S} is a set of states for the system
- T, the state transition model: $Pr(s'|s, \bar{a})$
- Ω, the observation model: $Pr(\bar{o}|s', \bar{a})$
- R, the reward model: $r(s, \bar{a})$

Goal: maximize expected cumulative reward

A solution to an infinite horizon Dec-POMDP is a joint policy, a set of **finite state controller (FSC)**, one for each agent

- \mathcal{Z}_n a finite set of (decision) nodes: abstraction of history
- W_n, controller nodes transition model, $W^{zao}_{n,z'} = Pr(z'|z, a, o, n)$
- π_n a set of local policies, $\pi^{a}_{n,z} = Pr(a|z, n)$
Introduction

Stick-Breaking Policy Learning in DEC-POMDPs

- **Usual Assumption**: Detailed models of all the agents in the Dec-POMDP are available
- **Problem**: What if we don’t have access to that?
- **Solution**: Use previously executed action, observation histories H, and rewards to improve future decision making
- **Prior State-of-the-art**: Uses fixed-sized finite state controllers to represent each agent’s policy, and uses EM for inference: leads to under/over-fitting issues [Wu et al. IJCAI13]
- **Result**: Novel approach to learn policies from data called DecSBPR (decentralized stick-breaking policy representation)
 - Automatically learns number of FSC states for each agent from data
 - Off-policy learning is available by experimentation in real mission domains
Empirical value function: $\hat{V}(D^K; \Theta)$ is constructed by data collected by following some behavior policies
- $\hat{V}(D^K; \Theta)$ can be converted into a likelihood function $L(D^K; \Theta)$

The posterior of the joint FSC: $p(\Theta|D^K) \propto L(D^K; \Theta)p(\Theta)$
- FSC node transition probabilities model via stick-breaking priors

An illustration of FSCs
The decentralized stick-breaking policy representation (Dec-SBPR): \((Z, \mu, \eta, \rho)\)

- \(Z = \bigotimes Z_n\) is an unbounded set of decision states
- \((\eta, \rho)\) determine \((W, \pi)\), the FSC parameters

\[
W^{i,1:1:}\infty_{n,a,o} \sim \text{SB}(\sigma^{i,1:1:}\infty_{n,a,o}, \eta^{i,1:1:}\infty_{n,a,o}), \quad \pi^{1:|A_n|}_{n,i} \sim \text{Dir}(\rho^{1:|A_n|}_{n,i}),
\]

\[
\eta^{i;j}_{n,a,o} \sim \text{Gamma}(c, d), \quad n = 1, \ldots, N, i, j = 1, \ldots, \infty
\]

- \(\text{SB}\) represents stick-breaking prior with

 \[
 W^{i,j}_{n,a,o} = V^{i,j}_{n,a,o} \prod_{m=1}^{j-1} (1 - V^{i,m}_{n,a,o})
 \]

 and \(V^{i,j}_{n,a,o} \sim \text{Beta}(\sigma^{i,j}_{n,a,o}, \eta^{i,j}_{n,a,o})\)

- \(\eta\) controls the sparsity of \(W\)
- \(\text{Dir}\) represents Dirichlet distribution

An illustration of the Stick-breaking process.

\[
\begin{align*}
W^{i,1}_{n,a,o} & \quad \cdots \quad W^{i,\infty}_{n,a,o} \\
V^{i,1}_{n,a,o} & \quad 1 - V^{i,1}_{n,a,o} \\
V^{i,2}_{n,a,o} (1 - V^{i,1}_{n,a,o}) & \quad (1 - V^{i,2}_{n,a,o})(1 - V^{i,1}_{n,a,o}) \\
& \quad \vdots
\end{align*}
\]

Recursively break the stick of length 1
Variational Bayesian Inference of Decentralized Policies

- Denote \(q(\Theta)q^k_t(\tilde{z}^{k}_{0:t}) \) as the variational approx. to \(p(\Theta, \tilde{z}^{k}_{0:t}|\mathcal{D}(K)) \)
- Learning decentralized policies as a constrained optimization problem

\[
\max_{\{q^k_t(\tilde{z}^{k}_{0:t})\}} \text{LB}(\{q^k_t(\tilde{z}^{k}_{0:t})\}, q(\Theta))
\]

subject to: \(q^k_t(\tilde{z}^{k}_{0:t}, \Theta) = \prod_{n=1}^{N} q^k_t(z^{k}_{n,0:t})q(\Theta_n) \Rightarrow \) mean-field approx. & decentralized policy representations

\[
\sum_{k=1}^{K} \sum_{t=0}^{T_k} \sum_{z^{k}_{1:N,0:t}=1}^{|\mathcal{Z}|} q^k_t(\tilde{z}^{k}_{0:t}) = K, \quad q^k_t(\tilde{z}^{k}_{0:t}) \geq 0, \quad \forall \tilde{z}^{k}, t, k,
\]

\[
\int p(\Theta)\,d\Theta = 1 \quad \text{and} \quad p(\Theta) \geq 0, \quad \forall \Theta
\]

\(\Rightarrow \) normalization constraints
Experimental Results

DEC-SBPR Results

► Learning variable vs fixed-size FSCs
 ▪ EM algorithm suffers from over/under-fitting issue
 ▪ Using the stick-breaking (SB) prior achieves slightly better performance than the Dirichlet prior, which can be explained the flexibility of SB prior

![Graph showing policy value vs number of nodes for Mars Rover, Recycle Robots, Box Pushing, and Mars Rovers]

Batch sequential learning and comparison with other methods
 ▪ DEC-SBPR achieves better results to the state-of-art policy-based method MCEM [Wu et al, IJCAI13]
 ▪ Periodic EM (PeriEM) [Pajarinen&Peltonen, NIPS11] and FB-HSIVI [Dibangoye et al, 14], two state-of-art planning methods (with known models) are treated as supper-bounds for the policy-based methods

Problems (S	,	A	,	O)	POLICY LEARNING (UNKNOWN MODEL)	PLANNING (KNOWN MODEL)							
	Dec-SBPR (fixed iteration)	Dec-SBPR (fixed time)	MCEM		PeriEM		FB-HSIVI								
	Value	Z	Time												
Broadcast (4, 2, 5)	9.20	2	7s	9.27	2	24s	9.15	3	24s	-	-	9.27	102	19.8s	
Recycling Robots (3, 3, 2)	31.26	3	147s	25.16	2	19s	30.78	3	19s	31.80	6 * 10	272s	31.93	108	0s
Box Pushing (100, 4, 5)	77.65	14	290s	58.27	9	32s	59.95	3	32s	106.68	4 * 10	7164s	244.43	331	1715.1s
Mars Rovers (256, 6, 8)	20.62	5	1286s	15.2	6	160s	8.16	3	160s	18.13	3 * 10	7132s	26.94	136	74.31s

NIPS15 Workshop (MIT,UNH,Duke) Bayesian Nonparametric Policy Learning in Dec-POMDPs
Experimental Results

DEC-SBPR Results

- Learning variable vs fixed-size FSCs
 - EM algorithm suffers from over/under-fitting issue
 - Using the stick-breaking (SB) prior achieves slightly better performance than the Dirichlet prior, which can be explained the flexibility of SB prior

- Batch sequential learning and comparison with other methods
 - DEC-SBPR achieves better results to the state-of-art policy-based method MCEM [Wu et al, IJCAI13]
 - Periodic EM (PeriEM) [Pajarinen&Peltonen, NIPS11] and FB-HSVI [Dibangoye et al, 14], two state-of-art planning methods (with known models) are treated as supper-bounds for the policy-based methods
Exploration and Exploitation in Sequential Learning

- **Behavior Policy:**
 \[p^{\Pi}(a|h) = p(y = 0|h)p(a|h, \Theta) + p(y = 1|h)/|\mathcal{A}|. \]

- **p(a|h, \Theta)** controls regular action selection.

- **p(y|h) = \sum_{z \in \mathcal{Z}} \sigma_y^z p(z|h), \forall h** controls exploitation \((y = 0) \) and exploration \((y = 1) \) [Cai et al., NIPS09]
 - \[\sigma_{y}^{z} = p(y = 0|z) \]

\[\sigma_0^z \sim \text{Beta}(u_0^z, u_1^z), \text{ with } \sigma_1^z = 1 - \sigma_0^z, \forall z \in \mathcal{Z}, \]
(3)

where \(u_1 > 1 \) is a given constant and \(\{u_0^z\}_{z=1}^{\mathcal{Z}} \) are updated using the rule,

\[u_0^i = \sum_{k=1}^{K} \sum_{t=0}^{T_k} \hat{\nu}_t^k \sum_{\tau=0}^{t} \phi_{t,\tau}^k(i), \forall i \in \mathcal{Z}, \]
(4)

- **\(u_1 \)** defines the total reward required in \(z \) for the agent to stop exploration in \(z \).

- **With a sufficiently large \(u_1 \),** the RPR is guaranteed to converge to the optimal policy (assuming \(|\mathcal{Z}| \) is appropriate).
Plots for illustrating exploration-exploitation tradeoff, including testing value (left), inferred controller numbers (middle) and exploration rate (right).
Scaling up

Performance on the traffic control domain with 10^{20} states and 100 agents. Left: Domain illustration; Middle: test reward; Right: Inferred decision state number.

- Domain challenge
 - 100/2500 agent controlling traffic flow at $10 \times 10/50 \times 50$ intersections
 - $10^{20}/10^{100}$ states & infinite planning horizon
- Perform sequential batch policy learning with exploration and exploitation tradeoff
- Dec-SBPR infers controller node size ($|Z|$) and achieves better performance than EM with arbitrarily selected $|Z|$
Toward Realword Problems (To appear in AAAI16)

![Diagram](image1)

![Diagram](image2)

![Diagram](image3)

![Diagram](image4)
Summary

- Developed a scalable Bayesian nonparametric policy learning framework for solving Dec-POMDPs
 - without the need to know the full Dec-POMDP model a priori
 - scalable to large problem sizes and numbers of agents
 - allows inferring variable-size controllers
 - allows encoding the experts/prior knowledge
 - provides high-quality solutions from a small amount of data
 - outperforms other model-free methods

The future work
- Customizing Dec-SBPR for more realistic problems
- Extension to multi-agent (decentralized) learning